GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors.
نویسندگان
چکیده
Pleiotropic growth factors play a number of critical roles in continuous processes of embryonic development; however, the mechanisms by which a single regulatory factor is able to orchestrate diverse developmental events remain imperfectly understood. In the development of the enteric nervous system (ENS), myenteric ganglia (MGs) form initially, after which the submucosal ganglia (SMGs) develop by radial inward migration of immature ENS precursors from the myenteric layer. Here, we demonstrate that glial cell line-derived neurotrophic factor (GDNF) is essential for the formation not only of the MGs, but the SMGs as well, establishing GDNF as a long-term acting neurotrophic factor for ENS development in a mouse model. GDNF promotes radial migration of SMG precursors. Interestingly, premigratory SMG precursors in the myenteric layer were distinguished from the surrounding neuronally differentiating cells by their lower activation of the GDNF-mediated MAPK pathway, suggesting that low activation of GDNF downstream pathways is required for the maintenance of the immature state. ENS precursors devoid of GDNF signaling during midgestation halt their migration, survive, and remain in an undifferentiated state over the long-term in vivo. Reactivation of GDNF signaling in these dormant precursors restores their migration and neuronal differentiation in gut organ culture. These findings suggest that pleiotropic function of GDNF is at least in part governed by modulating levels of intracellular activation of GDNF downstream pathways; high activation triggers neuronal differentiation, whereas low activation is crucial for the maintenance of progenitor state.
منابع مشابه
Guidance cues involved in the development of the peripheral autonomic nervous system.
All peripheral autonomic neurons arise from neural crest cells that migrate away from the neural tube and navigate to the location where ganglia will form. After differentiating into neurons, their axons then navigate to a variety of targets. During the development of the enteric nervous system, GDNF appears to play a role in inducing vagal neural crest cells to enter the gut, in retaining neur...
متن کاملThe timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.
Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alter...
متن کاملMET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner.
GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migratio...
متن کاملAgeing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes
BACKGROUND Ageing is associated with gastrointestinal dysfunction, which can have a major impact on quality of life of the elderly. A number of changes in the innervation of the gut during ageing have been reported, including neuronal loss and degenerative changes. Evidence indicates that reactive oxygen species (ROS) are elevated in ageing enteric neurons, but that neurotrophic factors may red...
متن کاملGDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons.
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 41 شماره
صفحات -
تاریخ انتشار 2013